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Abstract
This paper develops a unified phase field model for simulating finite deformation crack evolution and interfacial decohesion in
multi-phase elastic materials. Crack propagation is formulated using a phase field model, in which the order parameter s = 1
corresponds to the crack topology. The phase fieldmodel at the interface is enhancedwith cohesive zone characteristics through
a cohesive potential function. The interface displacement discontinuities are regularized using an auxiliary interface phase
field order parameter. The cohesive potential is associated with this interface phase field for delineating interfacial decohesion.
The model is numerically implemented using a multi-pass staggered solver. Numerical examples involving different failure
mechanisms are simulated for examining the performance of the proposed model. Different failure mechanisms such as
interfacial debonding, crack kinking and propagation in the brittle matrix, and their interactions are captured by the model.
Limited verification tests are conducted with analytical results.

Keywords Phase field model · Multi-phase materials · Crack evolution · Cohesive-zone interfacial decohesion · Finite
deformation

1 Introduction

Composite materials are used in a variety of high per-
formance applications, e.g. in the aerospace, automotive
and energy industry, among others. Despite their enhanced
thermo-mechanical properties, the presence of second-phase
fibers or particulates in their microstructures often adversely
affect their failure properties like toughness, ductility and
fatigue life. Major failure modes in composite microstruc-
tures include second-phase inclusion (fiber or particulate)
breakage, inclusion-matrix interfacial debonding and matrix
cracking [79]. Damage often initiates with interfacial deco-
hesion [13,31,62] or breakage of inclusions and subsequently
evolves with matrix crack growth and bridging, leading
to overall failure. Mechanisms like crack deflection, pen-
etration, branching and arresting have also been observed
to occur near the interfaces due to interactions with other
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cracks [39,45,46,55]. A robust modeling framework that
accounts for the interfacial properties, as well as the inter-
action between interfacial debonding and evolving cracks in
the inclusion and matrix phases of the microstructure is nec-
essary for predicting failure in composite materials. While
there have been developments in modeling microstructural
failure in composite microstructures, there is a significant
need for robust physics-based models.

A variety of approaches have been proposed for mod-
eling crack propagation in heterogeneous microstructures.
Some of them use linear elastic fracture mechanics (LEFM)
to model material cracking. The extended FEM or XFEM
[11,56], the cohesive zone models or CZM [58,65,87], the
generalized finite element methods [10,26], and the dis-
continuous Galerkin approach [2,90] are among popular
computational methods that introduce idealized surfaces for
discrete crack representation. In many of these methods, the
crack propagation-rate and direction are determined from
stress intensity factors or global energy release-rate. Many
of these models require modifications to the computational
model, e.g. mesh adaptation, element deletion or explicit
mesh separation, which are computationally inefficient espe-
cially when dealing with 3D non-planar cracks.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-020-01874-6&domain=pdf


www.manaraa.com

724 Computational Mechanics (2020) 66:723–743

Cohesive zone models or CZMs require cohesive ele-
ments embedded between adjacent finite elements along the
projected crack path with special traction-separation consti-
tutive relations [69]. They have been extensively used for
modeling interfacial decohesion and crack propagation in
[25,34,35,40,41]. However, major shortcomings arise with
efficient handling of stress transfer [88], and with them
requiring a-priori knowledge of 3D crack paths for insert-
ing the traction-separation laws. The XFEM was originally
developed in [11,14,56] to avert this a-priori crack-path
estimation, as well as adaptive re-meshing with crack prop-
agation. A cogent review is presented in [12]. It has been
widely used formodeling failure inmulti-phasematerials e.g.
in [18,71,83]. Although XFEM alleviates some of the limi-
tations of CZMs, it suffers from shortcomings of appropriate
augmentation functions for 3D crack tip fields especially in
the presence of heterogeneities, as well as criteria to nucle-
ate cracks. 3D level-set functions that are conventionally
used in X-FEM to represent crack surface topology can be
very difficult with heterogeneities of composite microstruc-
tures. Non-local methods like peridynamics [75,76] have
been successfully proposed to model crack propagation pre-
dominantly in elastic media. However their use in modeling
crack propagation in heterogeneous materials is quite lim-
ited.

Phase field (PF) models [5,19,21,24,52,74] have shown
promise in overcoming many of the above difficulties and
have received considerable attention from the fracture com-
munity in the recent years. This method is based on the
regularization of a sharp crack surface through an auxiliary
scalar field variable or order parameter s ∈ [0, 1] to represent
the crack topology. The sharp crack discontinuity is approxi-
mated by a smooth transition between the uncracked (s = 0)
and fully-cracked (s = 1) material phases [19,36]. The evo-
lution of s with deformation and loading naturally models
the crack growth process. Because of its thermodynamically
consistent framework [17,50,52], the phase field models are
able to implicitly track complex crack mechanisms includ-
ing crack nucleation, propagation and branching without the
need to introduce any a-priori crack path or remeshing due
to discontinuous fracture surfaces. Phase field approaches
have been successfully used for a wide variety of fracture
problems encompassing ductile fracture [6,22,54], dynamic
fracture [16,33], fatigue [43,49], fracture with contact appli-
cations [37] as well as fracture in multi-physics scenarios
[1,23,51,53,84]. PF modeling augmented with Global-Local
approach has been implemented for anisotropic brittle frac-
ture [64] and hydraulic fracture [4]. Recent works have also
focused on the formulation of PF models using Virtual Ele-
ment Method [3]. Coupled phase field and crystal plasticity
FE models have been developed by the Ghosh group in
[20,74,81] for predicting failure in polycrystalline materials.
In [20,81] an adaptivewavelet-based hierarchical enrichment

method has been developed to automatically provide high
mesh density in the vicinity of high gradients in the phase
field order parameter near the crack.

A majority of the phase field models have thus far
been applied to homogeneous materials without interfaces
belonging to heterogeneous phases. A few studies have
been conducted in the recent years to account for interfa-
cial damage. A phase field model for cohesive fracture has
been developed in [82] that uses an auxiliary field to model
displacement jump across interfaces. This formulation has
however been shown to have instability issues in [47], due
to to stress oscillations for unstructured meshes. To address
the issue of stress oscillation and to enhance accuracy, a
Bernstein Bzier discretization is used in [28] instead of con-
ventional Lagrangian interpolation. In [73] a multi phase
field model has been used to describe cracks in heteroge-
neous materials. The interfacial properties are accounted for
through the grain boundary energy rather than the interface
fracture toughness. A hybrid phase field model has been pro-
posed in [30,66], where cracks in the individual phases are
modeled by the phase field order parameter, while interfa-
cial debonding is modeled by an order parameter dependent
CZM. The model implements a simple linear tension cut-off
CZM, as the dependency of CZMs on the order parame-
ter may restrict the implementation of more commonly used
CZMs [89].Hence, thismodel is not suitable formost fracture
problems. The phase field model in [60] accounts for com-
plex interactions between inclusion and matrix cracks and
interfacial failure. The displacement jump across interfaces
is approximated as a smooth transitioning level-set function,
and interfaces are regularized by an auxiliary order param-
eter. A similar approach has been adopted in [88] where
the material properties are regularized using the auxiliary
interface phase field to model progressive failure in multi-
phase systems. A phase field model for interfacial damage
has been introduced in [31], where the interface is distributed
over a finite thickness and the effect of individual phases on
interfacial crack propagation is compensated using an exag-
geration function that depends on the fracture toughness ratio
of the interface and individual phases. An extension to this
model has been proposed in [32] to account for elastic het-
erogeneities.

This paper develops a unified fracture modeling frame-
work for inclusion/matrix cracking and interfacial decohe-
sion in elastic composite microstructures undergoing finite
deformation. The framework is capable of modeling differ-
ent microstructural damage mechanisms such as interfacial
decohesion that has a defined crack path, and crack prop-
agation in the matrix/inclusion phases for which the paths
are not know a-priori. The formulation is based on a
phase field model introduced in [74] for modeling crack
propagation in anisotropic polycrystalline materials under
finite strain conditions. The model inherently accounts for
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Fig. 1 Schematic diagram of a
microstructural domain with
interacting cracks and
interfaces: a Discrete
representation of the cracks and
interfaces. b Regularized
representation of the cracks and
interfaces by scalar field order
parameters s and η respectively

(a) (b)

tension–compression asymmetry of the material response
due to the presence of crack fields. This unified formula-
tion follows that in [60,88], where an auxiliary non-evolving
order parameter is introduced to describe interfaces in the
microstructural domain. A schematic of cracking in the
multi-phase microstructure is shown in Fig. 1. The model
is also effectively able to predict competing mechanisms of
crack deflection and penetration at the interfaces.

This paper begins with a brief discussion of the Helmholtz
free energy density function for crack phase field problem in
Sect. 2. Section 3 establishes the formulation for incorpo-
rating cohesive zone model-based interfacial damage in the
phase field framework. The kinematics of discontinuous dis-
placement fields and the regularization of interfaces are also
discussed. In Sect. 4 the governing equations for the coupled
displacement and phase field problem, along with viscous
stabilization and the finite element weak forms with solu-
tion scheme are briefly discussed. 2D and 3D simulations
are conducted in Sect. 5, followed by concluding remarks in
Sect. 6.

2 Finite strain phase fieldmodel for crack
propagation in homogeneous elastic
materials

In the phase field formulation, the crack phase field and
its gradient regularize the geometric features of the sharp
crack topology. Crack evolution results from energy dissipa-
tion by releasing the stored energy following thermodynamic
principles with the crack geometric function. This section
summarizes a finite deformation Helmholtz free energy
density function that has been derived in [74] for degrad-
ing anisotropic elastic materials, while exhibiting tension–
compression asymmetry.

2.1 Phase field regularization of a discrete crack

In phase field formulation for fracture problems, a continu-
ous order parameter s ∈ [0, 1] is introduced to represent the
regularized crack topology. s = 0 describes an intact mate-
rial while s = 1 describes a completely cracked material.
The order parameter s regularizes the discrete crack surface
through a functional Γlc(s), which in 3D is given as:

Γlc(s) =
∫

Ω0

γlc dΩ0 (1)

where γlc = 1

2lc

(
s2 + l2c∇Xs · ∇Xs

)
(2)

lc is a length-scale parameter that controls the sharpness of
the crack in the regularized representation and ∇X is the
gradient operator in the reference configuration. For lc →
0 the functional Γlc (s) converges to the exact sharp crack
geometry.

2.2 Helmholtz free energy density function for
elastic materials with evolving cracks

The finite deformation fields and the crack phase field are
coupled through a Helmholtz Free Energy Density (HFED)
function in the reference configuration. For elastic materials,
the HFED is assumed to be the sum of stored elastic energy
density ρ0ψ

e due to elastic stretching and the crack surface
energy density ρ0ψ

c, written as:

ρ0ψ = ρ0ψ
e (
Ee, s

) + ρ0ψ
c (s,∇Xs) (3)

where ρ0 is the material density in the reference configura-
tion. The first term on the RHS of Eq. (3)is the elastic energy
density ρ0ψ

e, which is a function of the Green–Lagrange

strain tensor Ee = 1

2
(FeTFe − I), expressed in terms of the

elastic deformation gradient Fe and the identity tensor I. To
account for the degrading effect of crack evolution on the
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stored elastic energy density, a phase field order parameter
s dependent degrading Green–Lagrange elastic strain tensor
Ẽe has been proposed in [74] for the coupled FE-phase field
model. Ẽe represents tension–compression asymmetry of
crackfields under finite strain conditions and is obtained from
isochoric-volumetric decomposition of the elastic deforma-
tion gradient as:

Fe = Fe
iso F

e
vol (4)

where Fe
iso = (J e)−

1
3 Fe and Fe

vol = (J e)
1
3 I are the volu-

metric and isochoric parts of the elastic deformation gradient
respectively, and J e = det Fe is the elastic Jacobian. The cor-
responding degrading elastic Green–Lagrange strain tensor
is expressed as:

Ẽe = g1(J
e, s)Ee

vol + g2(s)Ee (5a)

with g1(J
e, s) = H(1 − J e)(1 − κs)s and

g2(s) = [1 − (1 − κs)s] (5b)

Here Ee
vol = 1

2
(FeT

volF
e
vol − I) represents the volumetric part

of the elastic strain tensor and H(α) is the Heaviside step
function. κs � 1 is a small positive number that is intro-
duced to avoid singularity of the stiffness matrix for a fully
degraded material. The formulation in Eq. (5a) preserves
tension–compression asymmetry of the crack fields in finite
deformation through the termH(1− J e)s. J e > 1 indicates
a positive (tensile) volume change while J e < 1 denotes a
negative (compressive) volume change. For a positive vol-
ume change in Eq. (5a), both the isochoric and volumetric
components ofEe are degradedwith s. For a negative volume
change, the volumetric part Ee

vol is added back to the second
term in the equation, and hence the tension–compression
asymmetry. The form of the stored elastic energy density
derived in [74] is:

ρ0ψ
e = 1

2
Ẽe(s) : Ce : Ẽe(s) (6)

where Ce is the anisotropic elastic stiffness that is indepen-
dent of the evolving order parameter s. Tension–compression
asymmetry has been accounted for in fracture models of
isotropic materials in [7,15], where the strain energy is split
into deviatoric and volumetric components. Such energy
splitting is however difficult for anisotropic materials and
cannot be used in the present context. Consequently, the
tension–compression asymmetry consideration is accommo-
dated in Eq. (5) by decomposing the Green–Lagrange strain
tensor into volumetric and isochoric parts. This approach
allows the use of this tension–compression asymmetry for-
mulation for materials with any degree of anisotropy.

The second term on the RHS of Eq. (3) is the crack surface
energy density ρ0ψ

c that is commonly expressed in terms
of a Griffith type fracture energy per unit area Gc and the
regularized crack surface density γlc in Eq. (2), given as [50,
52]:

ρ0ψ
c = Gcγlc = Gc

2lc

(
s2 + l2c∇Xs · ∇Xs

)
(7)

ρ0ψ
c in the above equation has a quadratic dependence on

the phase field order parameter s, which causes immediate
material degradation with deformation. An alternate form of
ρ0ψ

c with a linear dependence on s has been proposed in
[44,53,72] as:

ρ0ψ
c = 2wc

(
s + l2c

2
∇Xs · ∇Xs

)
(8)

where wc is the specific fracture energy per unit volume.
This form provides a linear elastic phase prior to the onset
of degradation. The form in Eq. (8) has been shown to be
computationally expensive in [61]. It has also been shown
in [74] that the evolution of the crack phase field occurs in
a physically consistent manner for both the forms of ρ0ψ

c.
Moreover, while Eq. (7) yields instantaneous material degra-
dationwith straining, the damage accumulated at a small load
is minimal and does not significantly influence the overall
material response. Consequently, the crack surface energy
density in Eq. (7) is adopted in this work. Simulations are
conducted under isothermal conditions and the temperature
evolution is not considered in Eq. (3).

3 Interfacial failure using cohesive zone
phase fieldmodel for materials with
inclusions

The phase field formulation for homogeneous materials in
Sect. 2 is now extended to accommodate cohesive zone mod-
eling of interfacial decohesion in heterogeneous materials
containing multiple phases. The finite deformation, cohesive
zone phase field formulation is described in the following
subsections.

3.1 Finite deformation kinematic relations of
interfacial decohesion

Consider a multi-phase domain Ω(x) with a boundary Γ (x)
that is undergoing finite deformation under external loading,
where x corresponds to the current coordinates of a material
point X. Assume that the domain consists of n internal inter-
faces Γ I

i , i = 1, . . . , n, where the i th interface due to the
disparate phases divides Ω into sub-domains Ω+

i and Ω−
i .
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Let the reference (undeformed) configuration Ω0(X) with a
boundaryΓ0(X), shown in Fig. 2. It corresponds to an inverse
mapping X = χ−1(x), where X and χ are respectively
the material coordinates and coordinate mapping function
respectively. In the reference configuration, the n internal
interfaces are represented as Γ I

0i , i = 1, . . . , n, where the
i th interface divides Ω0 into sub-domains Ω+

0i and Ω−
0i . For

each interface Γ I
0i , N

I
i represents the outward normal point-

ing towards Ω+
0i .

Assume that with deformation, the interfaces undergo
decohesion causing a discontinuity in the displacement field
across the interfaces. Represented in the reference config-
uration, the total displacement field (corresponding to the
current coordinates x) can therefore be expressed as the addi-
tive decomposition of its continuous and discontinuous parts
as [8,9,77]:

u(X) = x − X = uc(X)︸ ︷︷ ︸
continuous

+
n∑

i=1

[[u]]iHΓ I
0i
(X)

︸ ︷︷ ︸
discontinuous

(9)

where [[u]]i denotes the jump in the displacement field u
across the i th interface and HΓ I

0i
(X) is the Heaviside step

function given as:

HΓ I
0i
(X) =

{
1 for X ∈ Ω+

0i

0 for X ∈ Ω−
0i

(10)

The spatial coordinates of the material point X in Ω can be
written as:

x = X + uc(X) +
n∑

i=1

[[u]]iHΓ I
0i
(X) (11)

The deformation gradient tensor is obtained as:

F = I + ∇Xuc +
n∑

i=1

[[u]]i ⊗ NI
i δΓ I

0i
(12)

where ∇X is the gradient operator in the reference config-
uration, δΓ I

0i
denotes the Dirac-delta function at Γ I

0i and ⊗
indicates the tensor product. Following [8,57], the deforma-
tion tensor in Eq. (12) may be expressed with amultiplicative
decomposition F = FeFd , where

Fe = I + ∇Xuc (13a)

Fd = I +
n∑

i=1

Ji ⊗ NI
i δΓ I

0i
(13b)

Here Fe is the deformation gradient component correspond-
ing to the continuous part of the total displacement field and

Fd is the deformation gradient component associatedwith the
discontinuous part. In Eq. (13b) Ji is defined as a pull-back
vector of the displacement jump [[u]]i in the intermediate
configuration [8,57] as shown in Fig. 2. It is expressed as:

Ji = Fe−1[[u]]i (14)

From Eq. (13b) it is seen that the multiplicative decompo-
sition F = FeFd holds only for X ∈ Γ I

0i and it reduces to
F = Fe for X ∈ Ω±

0i .

3.2 Phase field regularization of sharp interfaces

Implementation of the cohesive zone models for interfacial
decohesion requires a-priori knowledge of the interfacial
topologies in the domain. To facilitate this implementation,
a regularized representation of the pre-damaged interfaces in
the undeformed configuration is introduced through a func-
tional ΓlI as discussed in [60]. Analogous to the crack phase
field in Eq. (2), the auxiliary interface phase field order
parameter η ∈ [0, 1] in this representation manifests the
known interface topology in the reference configuration Ω0.
The order parameter η is solved from the governing equation
[60,88]:

η − l2I∇X · ∇Xη = 0 in Ω0 (15)

subject to Dirichlet boundary condition η = 1 on the internal
interfaces Γ I

0i for all i = 1, . . . , n. The Neumann boundary
condition on the domain boundary Γ0 is assumed to be zero.
lI is a length-scale parameter that determines the spread of
the regularized interface. In the limit, lI → 0 restores the
exact geometry of the sharp interface. Since the initial inter-
face topology does not evolvewith deformation, the interface
phase field order parameter η is solved only once prior to the
deformation process. With a known η field, the functional
ΓlI used for regularizing sharp interfaces can be expressed
as:

ΓlI (η) =
∫

Ω0

γlI dΩ0, where (16a)

γlI = 1

2lI

(
η2 + l2I∇Xη · ∇Xη

)
(16b)

3.3 Regularized displacement discontinuity at
interfaces

Following [60,85], the displacement jump [[u]]i at interfaces
shown in Fig. 3 is approximated as:

[[u]]i ≈ uc(X+
i ) − uc(X−

i ) (17)
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Fig. 2 Reference, intermediate
and current configurations of a
heterogeneous domain
undergoing finite deformation.
The intermediate configuration
is obtained through an inverse
mapping of the current
configuration by the tensor Fe−1

.
It delineates a mapping of the
displacement jump [[u]]i to a
vector Ji

whereX+
i = X+ h

2
NI
i andX

−
i = X− h

2
NI
i are two material

points on either side of the interface Γ I
0i . The displacement

field at X+
i and X−

i in Eq. (17) can be written from the first
order terms in the Taylor expansion (see Fig. 3) as:

uc
(
X + h

2
NI
i

)
= uc(X) + h

2
∇Xuc(X)NI

i (18a)

uc
(
X − h

2
NI
i

)
= uc(X) − h

2
∇Xuc(X)NI

i (18b)

where h is a very small scalar displacement jump regular-
ization parameter and NI

i is the normal to the interface Γ I
0i .

Substituting Eq. (18) in Eq. (17), the displacement jump can
be approximated by a smooth transition function as:

[[u]]i ≈ wi = h∇XucNI
i (19)

Here wi corresponds to a smooth displacement jump func-
tion. Unlike [60], where the interface normal has been
evaluated byusing level-set functions,NI

i at the internal inter-
faces are evaluated directly in this work from the interface
phase field order parameter η as:

NI
i = ∇Xη

‖∇Xη‖
∣∣∣
X∈Γ I

0i

(20)

where ‖ · ‖ corresponds to the L2 norm of a vector. Sub-
stituting Eqs. (13a) and (19) in Eq. (14), the regularized
displacement jump in the intermediate configuration can be
approximated as:

Fig. 3 Schematic of displacement jump regularization across an inter-
face

Ji = h(I − Fe−1
)NI

i = h(I − Fe−1
)

∇Xη

‖∇Xη‖
∣∣∣
X∈Γ I

0i

(21)

3.4 Phase field modeling of interfacial decohesion

The following ansatz is adopted for incorporating interfa-
cial decohesion in the phase field model. The deformation
gradient tensor Fd , corresponding to the discontinuous com-
ponent of the displacement field, is expressed in terms of the
regularized interface density function γlI in Eq. (16) as:

Fd = I +
n∑

i=1

Ji ⊗ NI
i γlI (22)

123



www.manaraa.com

Computational Mechanics (2020) 66:723–743 729

As shown in “Appendix A”, the function γlI preserves the
properties of Dirac-delta function δΓ I

0i
. Substituting Eq. (21)

in Eq. (22) yields the continuous component of the deforma-
tion gradient as:

Fe = (F + �)(I + �)−1 (23)

where � = ∑n
i=1 hγlIN

I
i ⊗ NI

i . In the numerical imple-
mentation of the finite deformation algorithm, the elastic
component Fe is first computed in a given increment with
the total deformation gradient tensor F using Eq. (23), and
subsequently Ẽe is computed using Eq. (5a).

3.5 Cohesive zonemodel-based helmholtz free
energy density function

To account for the additional energy contribution due to the
discontinuous displacement field at the internal interfaces,
theHFED function in Eq. (3) is augmentedwith an additional
energy contribution, written as [85]:

ρ0ψ = ρ0ψ
e
(
Ẽe

)
+ (1 − η)2ρ0ψ

c (s,∇Xs)

+
n∑

i=1

ρ0ψ
I
i

(
Ji , γlI

)
(24)

A potential-based cohesive zone model e.g. [59,70,86], in
which traction-separation relationships across fracture sur-
faces are obtained from a potential function, is adopted in
this study. Consequently, the term ρ0ψ

I
i

(
J, γlI

)
is the energy

density that accounts for decohesion at the i th internal inter-
face and is expressed as:

ρ0ψ
I
i

(
Ji , γlI

) = φi (ΔNi ,ΔT i )γlI (25)

Here φi (ΔNi ,ΔT i ) is the cohesive zone potential function,
which depends on the normal and tangential components of
Ji denoted by ΔNi and ΔT i respectively. These components
of the displacement jump in the intermediate configuration
are expressed as:

ΔNi = Ji · NI
i and ΔT i = ‖Ji − Ji · NI

i ‖ (26)

The factor (1− η)2 in Eq. (24) and the function γlI in Eq.
(25) respectively ensure that the cohesive zone model is acti-
vated only at the interfaces, and the constitutive behavior is
governed by the cohesive zone potential function throughout
the regularized interfacial zone. Away from the interfacial
zone, the contribution from cohesive zone potential to the
HFED reduces with diminishing influence of the interface
phase field, and increasing dominance of the crack phase
field in individual phases. In the limiting case, i.e. η → 0

and γlI → 0, the modified HFED in Eq. (24) reduces to the
HFED in homogeneous materials, discussed in Sect. 2.

3.5.1 Potential function in cohesive zone model

The cohesive zone potential function used in this work is
based on the unified potential-based PPRmodel, proposed in
[70] and discussed in [68]. The formulation in this paper is
equally applicable to any other potential-based cohesive zone
model, such as those in [59,86]. The PPR potential incorpo-
rates different fracture energies for each mode along with
other physical parameters such as cohesive strength, initial
slope and shape parameters for cohesive interactions and is
suitable for modeling arbitrary mixed mode fracture and is
expressed as:

φ(ΔN ,ΔT ) = min(φn, φt )

+
[
Γn

(
1 − ΔN

δn

)α (
m

α
+ ΔN

δn

)m

+ 〈φn − φt 〉
]

×
[
Γt

(
1 − |ΔT |

δt

)β (
n

β
+ |ΔT |

δt

)n

+ 〈φt − φn〉
]

(27)

where φn and φt are the energies formode I andMode II frac-
ture and Γn and Γt are energy constants in the PPR potential.
ΔN andΔT are the normal and tangential components of the
displacement jump. In a standard cohesive zone modeling
framework, these components are determined from the nodal
displacements of the cohesive elements faces, as discussed in
[80]. However in the cohesive zone phase field framework,
they are computed using Eq. (26). δn and δt are the final crack
openings representing complete failure in the normal and tan-
gential directions. They are determined from the condition
that the areas under the traction-separation curves are equal
to the mode I and mode II fracture energies respectively. α

and β represent the shape parameters, while the initial slopes
are controlled by the non-dimensional exponents m and n.
〈·〉 denotes the Macaulay bracket.

The normal and tangential traction forces are determined
from the derivatives of the potential function φ with respect
to the normal and tangential displacement jumpfields respec-
tively. This yields:

Tn(ΔN ,ΔT ) = Γn

δn

[
m

(
1 − ΔN

δn

)α (
m

α
+ ΔN

δn

)m−1

−α

(
1 − ΔN

δn

)α−1 (
m

α
+ ΔN

δn

)m
]

×
[
Γt

(
1 − |ΔT |

δt

)β (
n

β
+ |ΔT |

δt

)n

+ 〈φt − φn〉
]

(28a)
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Tt (ΔN ,ΔT ) = Γt
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[
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δt

)β (
n

β
+ |ΔT |

δt

)n−1

−β

(
1 − |ΔT |
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)β−1 (
n

β
+ |ΔT |

δt

)n
]

×
[
Γn

(
1 − ΔN

δn

)α (
m

α
+ ΔN

δn

)m

+ 〈φn − φt 〉
]

ΔT

|ΔT |
(28b)

The maximum normal and tangential strength σmax and
τmax are given by the traction values at critical separation δnc
and δtc respectively, i.e. Tn(δnc, 0) = σmax and Tt (0, δtc) =
τmax . The initial slope indicators λn and λt are given by
the ratio of the critical separation to the final crack opening
width.

4 Governing equations for the coupled
deformation and phase field crack problem

The governing equations for the coupled finite defor-
mation and phase field crack problem in a Lagrangian
description are summarized in this section. In the refer-
ence configuration Ω0 with boundary Γ0, the principle of
virtual power for the coupled problem is given as [20,
74]:

∫
Ω0

P : δḞ dΩ0 +
∫

Ω0

ξ0 · ∇Xδṡ dΩ0 +
∫

Ω0

π0 δṡ dΩ0

=
∫

Γ0T

T · δu̇ dΓ0T +
∫

Ω0

B · δu̇ dΩ0+
∫

Γ0λ

λ0 δṡ dΓ0λ +
∫

Ω0

ζ0 δṡ dΩ0 (29)

where P is the first Piola–Kirchhoff stress tensor and F
is the total deformation gradient, T is the applied trac-
tion loading on Γ0T and B is the body force per unit
volume. For the phase field problem, π0 and ξ0 are the
internal microforces and power-conjugate to the rate of the
phase field order parameter ṡ and its gradient ∇Xṡ respec-
tively.

Applying the divergence theorem to terms containing gra-
dients in Eq. (29), setting δṡ = 0 and δu = 0 on Γ0u , and
considering that the integral should hold for any arbitrary
volumeΩ0 yields the governing equation for the quasi-static
displacement field as:

∇X · P + B = 0 in Ω0 (30)

subject to Dirichlet boundary condition u = u on Γ0u and
Neumann boundary condition T = PN = T on Γ0T . Anal-
ogously, setting δu̇ = 0 with δs = 0 on Γ0s and considering

that the integral should be valid for any arbitrary volume Ω0

the governing equation for the evolving crack phase field is
given as:

∇X · ξ0 − π0 + ζ0 = 0 in Ω0 (31)

subject to Dirichlet boundary condition s = s on Γ0s . The

external traction loading λ0 = ρ0
∂ψ

∂∇Xs
· N for the order

parameter is assumed to be zero.
Constitutive relations for the coupled problem can be

established through the first and second law of thermody-
namics and are expressed as:

P = ρ0
∂ψ

∂F
(32a)

ξ0 = ρ0
∂ψ

∂∇Xs
and π0 = ρ0

∂ψ

∂s
(32b)

Incremental solutions to the governing Eqs. (30) and (31)
at time t + Δt are obtained from known displacement and
crack phase field values at time t , by solving their coupled
weak forms using the backward Euler method. To avert solv-
ing the coupled problem with large degrees of freedom, a
multi-pass staggered solution scheme is adopted. In this algo-
rithm, one field is kept frozen while the other field is being
iteratively solved using a Newton–Raphson type solver.

For problems involving material degradation due to frac-
ture, instabilities canoccur in the constitutivemodels depend-
ing on the model geometry and constitutive parameters. This
can cause the iterative solver to face convergence issues as
observed and reported in [27,29,42,48,74,78]. In [29] it is
shown that the fracture process leads to excessive energy
release, which can be equilibrated by incorporating dynam-
ical effects into the formulation. However, in the absence
of the kinetic energy as in the case of quasi-static formula-
tion, the excessive energy cannot be balanced and leads to
non-equilibrium states. In this case, the iterative solvers are
unable to find feasible solutions and therefore lack conver-
gence. Such issues have been discussed in [27,42], where the
excess energy is identified as the cause of convergence issues.
Arc-length formulations have been proposed in [48,78] for
phase fieldmodeling of brittle fracture. In [74] a 1-D problem
has been studied to demonstrate that crack evolution causes
an excess energy in the system for which no static equilib-
rium path exists. Static and quasi-static numerical solvers
are not able to find a feasible solution and leads to con-
vergence issues. A viscous stabilization method has been
adopted in [74] as an effectiveway to circumvent these issues.
This is discussed in Sect. 4.1. More details about the weak
form of the governing equations and the solution scheme are
described in Sect. 4.3.
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4.1 Viscous stabilization to resolve convergence
issues in the coupledmodel

Following [74], a viscous stabilization is adopted in this work
for overcoming the aforementioned convergence issues. To
attenuate the instability with fracture evolution, the govern-
ing equations are augmented with artificial viscosity that
allows the system to dissipate excess energy and thus achieve
a convergent solution without resorting to any dynamic for-
mulation. The artificial viscosity augmented equations are
given as [74]:

∇X · P + B = βgu u̇ in Ω0 (33a)

∇X · ρ0
∂ψ

∂∇Xs
− ρ0

∂ψ

∂s
= βls ṡ in Ω0 (33b)

in which βgu = βgu0s and βls are non-negative viscous
parameters for the displacement and phase field respectively.

In addition, the first Piola–Kirchhoff stress is also stabi-
lized using another non-negative viscous parameter βlu . The
stabilized first Piola–Kirchhoff stress tensor is given as:

P = ρ0
∂ψ

∂F
+ βluFĖ (34)

where E is the total Green–Lagrange strain tensor. The ana-
lytical derivation of P is given in “Appendix B”.

4.2 Enforcing crack irreversibility

Substituting Eqs. (3) and (7) into Eq. (33b), yields:

βls ṡ = ρ0
∂ψe

∂s
− Gc

lc

(
s − l2c∇X · ∇Xs

)
(35)

where the term ρ0
∂ψe

∂s
denotes a mechanical driving force

fmech . From Eq. (35) it is seen that for a given fmech , the
condition ṡ ≥ 0 always holds. In the incremental solution
process, for a given time step [t, t+Δt] replacing fmech with
max[t,t+Δt]( fmech) in Eq. (35) ensures irreversibility of crack

phase field.

4.3 Weak forms of the governing equations and
solution scheme

The method of weighted residual is applied to Eqs. (33a)
and (33b) to obtain the weak forms of the coupled displace-
ment and crack phase field problem. The weak form of the
displacement field problem is given as:

∫
Ω0

(
P : ∇Xδu − B · δu + βgu u̇ · δu

)
dΩ0

−
∫

Γ0T

T · δu dΓ0T = 0 (36)

and the weak form of the phase field problem is given as:

∫
Ω0

ρ0
∂ψ

∂∇Xs
· ∇Xδs dΩ0

+
∫

Ω0

(
ρ0

∂ψ

∂s
+ βls ṡ

)
δs dΩ0 = 0 (37)

As mentioned in Sect. 4, an incremental solution process
is adopted for numerical integration of the coupled, nonlin-
ear finite deformation and phase field problem. With known
displacement field u, crack phase field s and internal state
variables at time t , the weak forms in Eqs. (36) and (37) are
solved for u and s at time t+Δt using a multi-pass staggered
solution scheme. The variables η, s and u are passed from
one field to the other and are termed as inter-field information
(IFI). The solution scheme iterates between the displace-
ment field problem and phase field problem until both the
fields converge. A flowchart detailing the multi-pass stag-
gered solution scheme is shown in Fig. 4.

5 Numerical results

To explore the capability of the coupled deformation and
crack phase field models proposed in Sect. 3, 2D and 3D
composite problems with different interface configurations
are simulated in this section. In the first example, a dou-
ble cantilever beam with a weak interface is simulated to
compare fracture predictions by the finite and small deforma-
tion formulations. Next, an example of a single fiber-matrix
composite microstructure, subjected to transverse tensile
loading, is solved. This example demonstrates the necessity
of including an explicit interface with appropriate interfa-
cial properties, as it ensures the correct sequence of fracture
mechanisms in such two-phase material problems. The next
problem considered is for a heterogeneous microstructure
with multiple fibers randomly embedded in a matrix. This
problem manifests a complex crack path leading to the com-
plete failure of the microstructure.

Following analysis of the fiber-matrix composite
microstructures, an example of a bi-material system with
inclined interface is examined. The problem of a crack
impinging on an interface is studied and the model is com-
pared against analytical results obtained from linear elastic
fracture mechanics (LEFM). A matrix with an embedded
particle is studied next. Damage characteristics, e.g. crack
nucleation and propagation, are predicted using the current
formulation using a 3D model.

Conventional 3-noded constant-strain triangle and 4-
noded constant-strain tetrahedral elements are used for FE
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Fig. 4 Flowchart for multi-pass staggered solver for the coupled displacement field and crack phase field problem
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Fig. 5 a Schematic diagram of
the DCB with a weak interface;
the crack profile in the DCB for
b finite deformation and c small
deformation kinematics at
u = 0.16 mm

(a)

(b) (c)

modeling of the 2D and 3D problems respectively. Following
discussions in [52], the mesh is chosen such that the effec-
tive element size is half of the crack phase field regularization
length scale parameter lc. Also, according to parametric stud-
ies conducted in [60], the displacement jump regularization
parameterh is taken to be approximately equal to the effective
element size. The interface phase field regularization length
scale parameter lI is considered to be same as lc [60,88]. For
all the simulations, the values of shape parameters α and β

in the PPR potential are fixed at 2.0. The artificial viscosity
parameters are taken to be βlu = 104Pa · s and βls = 10Pa · s
for the 2D examples, whereas for 3D problems the values are
chosen to be βlu = 108Pa · s and βls = 102Pa · s. The values
of βgu and κs is set to zero. It is important that the viscos-
ity parameters are carefully chosen such that the mechanical
response is not dominated by these parameters [74].

5.1 A double cantilever beamwith weak interface

This example, involving a double cantilever beam (DCB),
is solved to compare the effect of finite and small deforma-
tion kinematics on fracture characteristics. This problem is
bending dominated, where larger flexural strains lead to addi-
tional bending stresses. A slender DCBwith a weak interface
is modeled as shown in Fig. 5a. The length L and thickness
B of the beam are 10mm and 1mm respectively. The beam
consists of an initial crack of length is 1 mm. The left edge of
the beam at x = 0 mm is fixed in both the x and y directions.
An equal and opposite uniform displacement u(t) = 10−3t
mm is applied respectively on the upper and lower end of
the right edge of the beam at x = 10 mm. The mechani-
cal properties are obtained from [60] as: Young’s modulus
E = 1 GPa and Poisson’s ratio ν = 0.3. The critical energy
rate is Gc = 100 N/m. Only the normal traction component
is considered for the interface. The interfacial properties are
taken to be: φn = 10 N/m, σmax = 1 MPa and λn = 0.015.
The viscosity parameters are set to zero. The length scale

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.2

0.4

0.6

0.8

1

Fig. 6 Load-displacement response plot for the DCB

parameter lc is chosen to be 0.025 mm, and correspondingly,
a minimummesh size of 0.0125 mm is taken at the interface.

The results of the DCB problem are compared for
both finite and small deformation kinematics. For small
deformation, the stored elastic energy density is given in
“Appendix C”. For the finite deformation problem, larger
strains at the crack tip results in a longer crack with a more
compliant response. For the small deformation problem, spu-
rious stresses occur at the crack tip with much less crack
growth for the same prescribed loading. Contour plots of the
crack profile are depicted in Fig. 5b, c. The load displace-
ment response plotted in Fig. 6 shows a significantly stiffer
response with large load drops for the small strain problem.
These differences allude to the use of large strains or rotations
for certain problems with evolving fracture.
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Fig. 7 Single fiber-matrix composite microstructure subjected to trans-
verse tensile loading

5.2 Composite microstructure with a single fiber in
thematrix

Amicrostructure consistingof a cylindrical hardfiber embed-
ded in a square soft matrix is modeled as shown in Fig. 7. The
dimensions of the microstructure is taken to be L = B = 1
mm with the fiber diameter D = 0.5 mm. The mechanical
boundary conditions are as follows:
The lower edge y = 0 mm is restricted to move in the y-
direction and a prescribed displacement field is applied on
the upper edge y = 1mm. The x-direction on both lower and
upper edges are free. The remaining two edges i.e. x = 0mm
and x = 1 mm are restricted in the x-direction and free to
move in the y-direction. Both the fiber and matrix materials
are isotropic. The mechanical properties are taken from [88]
and are given as:
For the matrix: Young’s modulus Em = 4 GPa, Poisson’s
ratio νm = 0.4 and critical energy release rate Gm

c = 250
N/m.
For the fiber:Young’smodulus E f = 40GPa, Poisson’s ratio

ν f = 0.33 and critical energy release rate G f
c = 400 N/m.

For simplicity, only the normal traction component of the
interfacial cohesive potential accounted for in this example.
The critical energy release rate φn in mode I is taken as 50
N/m and the cohesive strength σmax is 10 MPa. The initial
slope indicator λn is 0.2.

The length scale parameter is chosen to be 0.0075 mm for
this problem. Therefore, a minimum mesh size of 0.00375
mm is considered near the interface, as well as in the region
where a matrix crack is expected to propagate. Different
stages of crack propagation are illustrated in Fig. 8. Two sym-
metric cracks nucleate from the upper and lower side of the

interface. This crack nucleation is attributed to debonding
of the fiber-matrix interface. Debonding occurs till a half-
debonding angle of ≈ 72o is achieved. This half-debonding
angle is consistent with the 60o − 70o range reported in the
boundary-element basedmicromechanical model in [67]. On
further increasing the applied load, the crack on the upper
side of the interface kinks into the matrix and initiates the
process of matrix cracking, while that on the lower side
is arrested. These observations are in good agreement with
results reported in [38,63], where the crack profile is obtained
using a discontinuous approach with cohesive elements. The
load-displacement response curve is plotted in Fig. 9. The
first drop in the load carrying capacity can be attributed to
fiber-matrix debonding at the interface and the second drop
in the curve is due to the matrix cracking.

The micromechanical problem in Fig. 7 is also solved
by considering a coherent fiber-matrix interface using the
formulation in Sect. 2 without the cohesive zone phase field
model. The corresponding crack profile is shown in Fig. 10.
From this example, it is obvious that the formulation without
accounting for the interfacial damage predicts crack profiles
that do not include interfacial decohesion. The differences in
the crack profiles of Figs. 8 and 10 highlight the necessity
of incorporating the interfacial properties, e.g. cohesive zone
model in the interfacial phase field formulation.

5.3 Composite microstructure with randomly
distributed fibers

This example models a composite microstructure consist-
ing of multiple fibers randomly distributed in a relatively
compliant matrix. Complex crack patterns are expected to
evolve for this microstructure due to the interaction between
interfacial debonds and nucleated cracks in the matrix. The
geometry of themicrostructure is illustrated in Fig. 11, which
has a size of L = B = 1 mm. The fiber volume fraction
of the two-dimensional computational domain is 13% with
the fiber diameter being D = 0.025 mm for all fibers. The
boundary conditions and the properties of the matrix, fibers
and the cohesive interfaces are the same as for the single-
fiber microstructure example in Sect. 5.2. The length scale
parameter is chosen as 0.004 . Since the distribution of the
fibers are random and the cracks can initiate and propagate
at multiple locations, a uniform fine mesh with element size
of 0.002 mm is adopted.

The evolving crack profile is shown in Fig. 12. It is
observed that the debonding initiates and propagates at the
fiber-matrix interfaces, which is followed by crack propa-
gation into the matrix. This series of successive (sometimes
simultaneous) debonding and matrix cracks leads to a com-
plex array of cracks in the microstructure. However, with
increase in loading, the cracks coalesce into a single domi-
nant crack path that results in complete loss of stiffness of
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Fig. 8 Different stages of crack
evolution in the single
fiber-matrix composite
microstructure at: a t = 13.2702
s, b t = 14.9343 s, c
t = 14.9445 s and d
t = 14.9540 s

(a) (b)

(c) (d)
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Fig. 9 Load-displacement curve for single fiber-matrix microstructure

the microstructure. This example further demonstrates that
the formulation can capture complex mechanisms like inter-
actions among multiple cracks and transition of cracks from
interfacial debonding into matrix cracking.

5.4 Crack impinging on an inclined interface

This problem elucidates the competition between penetration
and deflection of a crack impinging on an interface. It has
been analytically investigated in [55] using LEFMand in [31,
66,89] using different variations of the phase field approach.

Fig. 10 Crack profile for single fiber-matrix microstructure without
accounting for interfacial properties

According to LEFM, the ratio of the energy release-rate Gd
for a deflecting crack to that of a penetrating crack Gp, is
a function of the inclination angle θint . This ratio can be
expressed as [55]:

Gd
Gp

= 1

16

{[
3 cos

(
θint

2

)
+ cos

(
3

2
θint

)]2
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Fig. 11 Composite microstructure with multiple fibers randomly dis-
tributed in the matrix subjected to tensile loading

+
[
sin

(
θint

2

)
+ sin

(
3

2
θint

)]2}
(38)

Additionally, the criteria for crack deflection along the inter-
face is given by:

Gint
Gbulk <

Gd
Gp

(39)

where
Gint
Gbulk is the ratio of the fracture toughness of the inter-

face to that of the matrix material. When this criteria is not
met, the crack penetrates into the matrix. The plot separating
the two possible cases of deflection and penetration is shown
in Fig. 13.

The computational domain of a bi-material specimenwith
an oblique cohesive interface and a initial crack is shown in
Fig. 14. The dimensions of the computational specimen are
L = B = 1 mm. The length of the initial crack is taken to
be L/2 = 0.5 mm. The specimen is subjected to uniform
displacement loading on both the upper and lower edges i.e.
at y = 0 mm and y = 1 mm. The material is isotropic and its
mechanical properties are given as: Young’s modulus E =
210 GPa and Poisson’s ratio ν = 0.3. These properties have
been used for a similar numerical example without interface
in [74]. For the interface, the mode I and mode II critical
energy rates are assumed to be equal, i.e. φn = φt = Gint ,
and the cohesive strengthsσmax and τmax are both assumed to
be 170 MPa. The initial slope indicators for both the normal

Fig. 12 Crack profile evolution in microstructure with randomly distributed multiple fibers at: a t = 15.1882 s, b t = 15.1902 s, c t = 15.1939 s,
d t = 15.1962 s, e t = 15.1982 s, and f t = 15.5002 s
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Fig. 13 The ratio of the fracture toughness ratio
Gint
Gbulk

as a function

of the interface inclination angle θint for two sets (A and B) of simula-
tion conditions. The deflection-penetration curve is generated by LEFM
[55]. The blue diamondmarkers represent the transition from deflecting
crack to penetrating crack with increasing the fracture toughness ratio,
while the red square markers depict the same transition with increasing
inclination angle

Fig. 14 Schematic of a bi-material specimen with an initial crack
impinging on an inclined cohesive interface

and tangential separation are chosen to be λn = λt = 0.015.
The length scale parameter is chosen to be 0.005 mm. Thus
a fine mesh of element size 0.0025 mm is used to model the
interface and the initial crack. The initial crack is modeled
by a crack phase field value of (s = 1) assigned to nodes on
it.

Two sets of simulations are performed for this example.
In the first set (Set A) , the inclination of the interface is kept

fixed at 60o and the ratio
Gint
Gbulk is varied. For the second

set (Set B), the inclination angles are varied while keeping

the ratio
Gint
Gbulk fixed at 0.5. The predicted crack profiles for

the simulation Set A and Set B are shown in Figs. 15 and 16
respectively.

As depicted in Fig. 13, for the simulation Set A, the crack
profile is expected to change from a deflecting crack to a pen-
etrating crack with increase in the fracture toughness ratio
Gint
Gbulk . This trend is clearly predicted by the proposed com-

putational model as shown in Fig. 15, where the length of the
crack path following the interface before penetrating into the
matrix material reduces with increasing fracture toughness

ratio
Gint
Gbulk . Similarly for the simulations in Set B, the crack

profile is expected to transition from deflection to penetration
with increasing interface inclination angle. This transition is
also captured well by the model as observed from the con-
tour plots in Fig. 16. For θint = 30o and 45o, the crack
fully deflects and no penetration takes place. For θint = 60o

the crack is initially deflected and then it penetrates into the
matrix. No deflection occurs for θint = 80o, which is consis-
tent with the analytical results from LEFM.

5.5 3D composite microstructure with hard particle
embedded in a soft matrix

A3Dcompositemicrostructure consisting of a hard spherical
particle embedded in a soft matrix and subjected to tensile
loading, is modeled as shown in Fig. 17. The microstructure
is cubic with dimensions 10µm×10µm×10µm, while the
particle has a diameter of 5µm. A prescribed displacement
of u(t) = 3 × 10−3 t (µm) is applied in the y-direction on
the xz plane with y = 10µm. The xz plane with y = 0 is
restricted to move in the y-direction. Boundary conditions
are applied to restrict any rigid body motion by restricting
displacements in the x and z-directions along the lines y = 0
and z = 0 respectively. Thematrix is epoxy with a bulkmod-
ulus κ = 4.3 GPa and a shear modulus G = 3.5 GPa. The
particle is transversely isotropic with the plane of isotropy
being perpendicular to y-axis. Mechanical properties of the
particle are taken to be that of PZT-5H, given in Table 1.

In Table 1 Ex and Ey are the Young’s modulus in x
and y-directions respectively, Gxy is the shear modulus in
the xy plane, and νxy and νxz represent the Poisson’s ratio

in the xy and xz planes respectively. Gxz = Ex

2(1 + νxz)
is the shear modulus in the xz plane. Interfacial properties
include the mode I and mode II fracture toughnesses φn=10
N/m and φt=40 N/m respectively, and the cohesive strengths
σmax=170 MPa and τmax=120 MPa respectively. The initial
slope indicators λn and λt are both equal to 0.015.

Figure 18 shows the evolved crack phase field order
parameter s. The crack nucleates at the interface and then
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(a) (b) (c)

Fig. 15 Contour plots for the simulation set (Set A) depicting the crack path for different values of interface to matrix fracture toughness ratio
Gint
Gbulk

Fig. 16 Contour plots for the
simulation set (Set B) depicting
the crack path for different
values of interface inclination
angle θint

(a) (b)

(c) (d)

propagates into the matrix. Since the embedded particle is
hard and has a higher critical energy release rate, the crack
goes around the particle and does not penetrate. Debonding
occurs until a critical kinking angle value is reached, after
which the crack penetrates and starts propagating into the
matrix until complete failure. It is also seen that the debond-

ing, followed by matrix cracking, occurs only on one side
of the particle. The crack propagation is axisymmetric about
the loading axis. The load-displacement response is shown in
Fig. 19. The initial snap-back is due to the interface decohe-
sion between the particle and the matrix. This is followed by
the growth of interface decohesion where the load increases
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Fig. 17 3D composite microstructure consisting of a hard spherical
particle embedded in a soft matrix

Table 1 Elastic properties of embedded particle

Ex (GPa) Ey (GPa) Gxy (GPa) νxy νxz

60 48.2 23 0.41 0.3

with the displacement. Finally, the crack kinks into thematrix
and results in the complete loss of load carrying capacity.

6 Concluding remarks

This paper develops a finite deformation phase field model
for multi-phase composite materials that can simultaneously
predict cracking in individual phases as well as interfa-
cial decohesion. The phase field model at the interface is
enhanced with cohesive zone characteristics through a cohe-
sive potential function to delineate the failure process at
interfaces. The interface displacement discontinuities, cor-
responding to debonding, are regularized using an auxiliary
interface phase field order parameter. The cohesive potential
is associated with this interface phase field for delineat-
ing interfacial decohesion. A multi-pass staggered nonlinear
finite element solver is employed to solve for the coupled set
of governing differential equations for the displacement and
crack phase field, resulting from the Helmholtz free energy
density (HFED) function.

Several numerical examples involving interfacial deco-
hesion and matrix cracking are conducted to assess the
capabilities of the proposed model. The double cantilever
beam problem elucidates the significant differences in finite
deformation and small deformation solutions for fracture
problems. The single fiber-matrix composite example shows
good agreement with experimental observations. Different
stages of failure processes are accurately captured by the
model. They include cohesive debonding that initiates at the
interface and grows along the interface till a critical debond-
ing angle is reached, before penetrating into the matrix
leading to complete failure. The example of the randomly
dispersed multiple fibers in a composite microstructure sys-
temdemonstrates a complex interacting crackgrowthprocess
leading to a dominant single crack that fails the microstruc-
ture. Another benchmark problem simulated by the model
explores competing phenomena of deflection and penetration
of a crack that is impinging at an inclined interface. Results of
the simulation compare well with trends predicted by LEFM.
In the final example, a 3Dmicrostructure consisting of a hard
spherical particle embedded in a soft matrix under uni-axial
tensile loading is analyzed. The simulation demonstrates the
inception of interfacial decohesion that evolves into a 3D
crack percolating the microstructure. Thus, the numerical
examples solved highlight different aspects of the proposed
model. A challenging issue with the phase field methods
is however the enormous number of elements required to
resolve the regularization length scale parameters. This prob-
lem can be significantly mitigated by the wavelet-adapted
hierarchicalmesh refinement techniques proposed in [20,81].
Moreover, This will be implemented in subsequent publica-
tions.
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Fig. 18 Crack profile in the 3D
microstructure at: a t = 142.61
s, b t = 170.94 s, c t = 171.69 s
d t = 172.39 s. Only the order
parameter field 0.95 ≤ s ≤ 1 is
visualized
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Fig. 19 Load-displacement response curve for the 3D microstructure
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Appendix A: Equivalence of dirac delta func-
tion and regularized interface density

The equivalence of the regularized interface density γlI and
the Dirac delta function δΓ I

0i
is established in this appendix.

The solution to Eq. (15) in 1D in the domain with boundary
conditions η(0) = 1 and η(±∞) = 0 is given by [88]:

η(x) = e
− |x |

l I (40)
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Using Eqs. (40) and (16) gives the regularized interface den-
sity function in 1D as:

γlI = 1

lI
e
− 2|x |

l I (41)

Integrating Eq. (41) within (−∞,∞) gives:

∫ ∞

−∞
γlI dx = 2

lI

∫ ∞

0
e
− 2x

lI dx = −e
− 2x

lI

∣∣∣∞
0

= 1 (42)

which is also a property of Dirac-delta function. Thus, γlI
preserves the property of Dirac-delta function.

Appendix B: Derivation of first
Piola–Kirchhoff stress tensor

The first Piola–Kirchhoff stress tensor is derived analytically
in this appendix. The following tensor derivatives are used
in the rest of the appendix:

(
∂Ẽe

∂Fe

)

i jkl

= 1

3
g1(J

e, s)J e
2
3
δi j

+ 1

2
g2(s)

(
Fe
klδ jl + Fe

k jδil

)
(43a)

(
∂Fe

∂F

)
i jkl

= δik F
d−1

l j (43b)

(
∂Fe−1

∂Fe

)

i jkl

= −Fe−1

ik Fe−1

l j (43c)

Now using Eqs. (24) and (34), P is given as:

P = ρ0
∂ψe

∂F
+

n∑
i=1

ρ0
∂ψ I

i

∂F
+ βluFĖ (44)

where

ρ0
∂ψe

∂F
= ρ0

∂ψe

∂Ẽe
: ∂Ẽe

∂Fe
: ∂Fe

∂F

= 1

3
g1(J

e, s)J e
2
3

(
I : Ce : Ẽe

)
F−T

+ g2(s)Fe
(
C
e : Ẽe

)
Fd−T

(45)

and

ρ0
∂ψ I

i

∂F
= γlI

∂φi

∂F

= γlI

(
∂φi

∂ΔNi

∂ΔNi

∂F
+ ∂φi

∂ΔT i

∂ΔNi

∂F

)

= γlI

(
Tn

∂ΔNi

∂Fe
: ∂Fe

∂F
+ Tt

∂ΔNi

∂Fe
: ∂Fe

∂F

)
(46)

in which Tn and Tt are computed from Eq. (28) and
∂ΔN

∂Fe

and
∂ΔN

∂Fe
can be derived as:

∂ΔNi

∂Fe
= −hNI

i ⊗ NI
i : ∂Fe−1

∂Fe
(47a)

∂ΔT i

∂Fe
= − h

ΔT i

(
Ji ⊗ NI

i + ΔNiNI
i ⊗ NI

i

)
: ∂Fe−1

∂Fe
(47b)

Appendix C: Stored elastic energy density
for small deformation kinematics

The stored elastic energy density in Eq. (6) takes the fol-
lowing form for an isotropic material under small strain
conditions i.e. (Fe ≈ I) [74]:

ρ0ψ
e = (1 − s)2

[
K

2
〈tr (εe)〉2+ + μtr

(
εe

2

dev

)]
+ K

2
〈tr (εe)〉2−

(48)

where εe and εedev represent the linear elastic strain tensor
and its deviatoric component respectively. K and μ are the
bulk and shear modulus respectively.

The linear elastic strain tensor in the presence of interfaces
is given as [60,85]:

εe = ∇symu −
n∑

i=1

[[u]]i ⊗sym NI
i γlI (49)

where ∇sym is the symmetric gradient operator and ⊗sym

represents the symmetric tensor product.
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